主页  技术文章  UC3842

三月 9 2020

基于UC3842的反激式AC-DC开关电源设计

相关产品推荐
产品图片产品型号制造商说明类别PWM类型
UC3842UC3842德州仪器(TI)转换器离线升压,降压,反激式,正激拓扑高达500kHz的8引脚PDIP集成电路(IC)电流模式

  电子设备的供电离不开直流电源,直流电源的作用主要是将交流电转换为稳定的直流电。现代电子设备不仅要求直流电源输出稳定的直流电,对电路的效率也要求越来越高,要求电源要耐用、体积要小等。开关电源的调整管因工作在开关状态,功耗很小,所以开关电源的效率非常高、同时又具备输出稳定、体积小等优点,因此设计和开发高性能的开关电源具有很大的市场前景。本文基于UC3842PWM控制芯片设计了一种反激式AC-DC开关电源,输入电压为交流80〜265V,输出电压为直流12V电流5A,电压纹波<±50mV。

  1.UC3842内部结构

  UC3842是应用比较广泛的一种电流控制型PWM(PulseWidthModulation,脉冲宽度调制)控制器,其内部结构原理图如图1所示。主要由振荡器、误差放大器、电流检查比较器、PWM锁存器、基准电压等功能模块构成。

UC3842的内部结构图

  图1 UC3842的内部结构图

  2.AC-DC开关电源总体设计框图

  AC-DC开关电源的总体设计框图如图2所示。电路主要由输入保护电路和EMI(Electron-MagneticInterference:电磁干扰)滤波器、输入整流滤波电路、功率开关管、高频变压器、输出整流滤波电路、PWM控器电路及电压反馈电路等部分组成。

AC-DC开关电源设计框图

  图2 AC-DC开关电源设计框图

  80〜265V交流电经过输入整流滤波获得直流高压,再由功率开关管Q斩波、高频变压器T降压,得到高频矩形波电压,然后通过输出整流滤波后获得所需要的直流输出电压Uo。PWM调制器产生频率固定而脉冲宽度可随反馈信号调节的驱动信号,控制开关管的通、断时间,从而达到自动稳定输出电压和输出电流的目的。

  3.单元电路设计

  3.1 输入保护电路和EMI滤波器

  输入保护电路和EMI(Electron-MagneticInterference:电磁干扰)滤波电路设计如图3所示。电路中熔丝管FU,热敏电阻Ri和压敏电阻Rv构成输入保护电路,当输入发生短路等故障时能快速切断电源,保护电路。压敏电阻Rv可旁路浪涌电压,防雷击保护。

输入保护电路和EMI滤波器

  图3 输入保护电路和EMI滤波器

  EMI滤波电路由共模扼流圈L、滤波电容Cx1、Cx2、CY1、CY2构成,能有效滤除电网高频噪声,提高电子设备的抗干扰能力及系统的可靠性。当出现共模干扰时,由于L的两个磁通方向相同,经过耦合对共模信号呈现很大的感抗,使之不易通过。Cx1和Cx2跨接在两条电源线之间,可用来滤波线间干扰,即串模干扰;CY1和CY2串联后接在两条电源线之间,并将电容器中点接大地,能有效抑制共模干扰。

  3.2 输入整流滤波电路

  输入整流滤波电路采用桥式整流电容滤波电路结构,如图4所示。50Hz交流电压经过全波整流后变成脉动直流电压,再经过滤波电容滤波得到直流高压电U1。

输入整流滤波电路

  图4 输入整流滤波电路

  3.3 反激变换器

  DC-DC变换器采用的是反激变换器拓扑结构,如图5所示,包括功率开关管Q1、高频变压器T1及输出整流滤波电路。

反激变换器

  图5 反激变换器

  Q1功率开关管的栅极接PWM输出信号,当栅极输入高电平时,开关管导通,输入低电平时,开关管截止。当开关管导通时,电流流过变压器初级线圈Np,而此时次级整流二极管截止,次级无电流流过,电能储存在高频变压器的初级电感线圈中Np中;当开关管关断时,初级线圈电流关断,所有绕组电压反向,整流二极管导通,初级线圈上的电能传输给次极绕组,并经过次级整流二极管D2整流、C3、C4、C5、L1组成的π型滤波器滤波后得到所需直流电压。

  图中D1、C1、R1构成漏极钳位保护电路。当开关管由导通变成截止时,在一次绕组上产生尖峰电压和感应电压,与直流高压叠加在MOS管的漏极,很容易击穿开关管,漏极保护电路则可吸收产生的尖峰电压。

  3.4 PWM控制电路

  PWM控制电路采用UC3842集成芯片进行设计,如图6所示。

PWM控制电路

  图6 PWM控制电路

  电路中变压器的另一次级绕组NS2及其所连接的二极管D3、电容元件C6、C7构成反激式开关电源的另一路直流输出为UC3842提供直流电压。

  在UC3842的1脚和2脚之间并接R2和C8,对内部误差放大器进行补偿。输出反馈电压经2脚送到内部的误差比较放大器,与内部的基准电压进行比较,产生的误差信号送到内部电流检测比较器。流过开关管的电流(即初级电感导通时电流)经过R8采样,转换成电压,经R4和C11高频滤波后送入到芯片3脚。

  内部振荡电路频率由4脚外接的R3和C10确定,内部振荡电路的频率决定PWM输出脉冲信号的频率,而PWM输出信号的脉冲宽度则随反馈电压的大小而变化。如果2脚的反馈电压变高,则PWM控制电路会使输出脉冲的宽度变窄,占空比减小,功率开关管Q1的导通时间变短。

  3.5 电压反馈电路

  电压反馈电路采用线性光电耦合器、三端可调稳压管以及由R4、R5、R6组成输出电压采样电路组成,设计电路如图7所示。

电压反馈电路

  图7 电压反馈电路

  输出电压经米样电阻R4、R5、R6分压,分压后的电压控制可调稳压管DZ的稳压值。当输出电压降低时,经采样电阻分压后输入到可调稳压管DZ的参考电压也降低,可调稳压管的稳压值减小,从而流过光耦中发光二极管的电流增加,光增强,流过光耦中光电三极管的电流也相应的增加,在反馈电阻R8上形成的反馈电压也增加,反馈电压送入到PWM控制器中,经过PWM控制电路使输出脉冲的宽度变宽,占空比增加,则功率开关管9的导通时间增加,输出电压增加,从而使输出电压稳定,反之亦然,从而达到稳疋输出电压的目的。

  4. 电路测试结果与分析

  电路测试波形如图8所示

电路测试波形

  图8 电路测试波形

  1)空载时开关管栅极电压波形如图8(a)所示。

  2)有载时开关管栅极电压波形如图8(b)所示。

  由这两个波形图对比可以看出,当输出端带负载时,输出电压会降低,但经过PWM控制电路输出的送入到开关管栅极的脉冲电压宽度变宽,开关管的导通时间变长,输出电压增加,从而使输出电压稳定。

  3)空载时变压器输出端两端电压波形如图8(c)所示。

  4)有载时变压器输出端两端电压波形如图8(d)所示。

  这两个波形和栅极电压波形进行比较,可知当栅极电压为正,开关管导通时,变压器原方线圈中有电流流过,但变压器付方(输出端)两端电压为负,所以该变换器是一个反激变换器。

  5)直流耦合时测得的输出电压波形如图8(e)所示。

  6)交流耦合时测得的输出纹波电压如图8(f)所示。

  从这两个测试结果可以看出输出电压稳定在+12V,输出电压的纹波限制在±20mV内,满足设计要求。

  结束语

  针对现代电子设备不仅要求直流电源输出稳定的直流电,对电路的效率要求也越来越高等要求,本文以UC3842为PWM控制器,首先交流电直接经过整流滤波变换为直流高压,然后采用反激变换器,利用线性光电耦合器、三端可调稳压管以及采样电阻构成输出电压反馈电路,设计了一种反激式AC-DC开关电源,性能达到了预期指标要求,该设计电路具有精度高、纹波小、效率高、性能可靠等优点。

相关文章

  • 基于UC3842的多路输出型开关电源设计
    电源作为各种装置和设备的动力,是电子设备的重要部分。常用的是线性稳压电源,而这种单一的固定电源模式,随着电子技术的发展已无法满足需求。通常所说的线性稳压电源,是一种直流稳压电源,该...
  • 基于UC3842的医疗开关电源设计
    医疗电源是对安规及EMI、EMC比较高的设备,作为绿色开关电源,将在21世纪给人类社会带来巨大的变化。性能优良的医疗设备系统离不开性能优良的控制模块,而控制模块的性能在很大程度上取...
  • UC3842在电压反馈电路中的应用
    通常,PWM型开关电源把输出电压的采样作为PWM控制器的反馈电压,该反馈电压经PWM控制器内部的误差放大器后,调整开关信号的占空比以实现输出电压的稳定。但不同的电压反馈电路,其输出...
  • 基于UC3842的反激式AC-DC开关电源设计
    电子设备的供电离不开直流电源,直流电源的作用主要是将交流电转换为稳定的直流电。现代电子设备不仅要求直流电源输出稳定的直流电,对电路的效率也要求越来越高,要求电源要耐用、体积要小等。...
  • 基于UC3842的双模电机控制设计
    电动机作为当代最重要的机电能量转换器,其应用已经在人们的生活中和国民经济发展的各个领域中普及。据资料统计,在所有的动力能源中,其中百分之九十以上来源于电动机。在电气时代,电动机的转...
  • 基于UC3842芯片的Boost变换电路设计
    Boost变换器在一定的输出功率下可以减小输出电流以及输出滤波电容的容值和体积,在开关电源和电子镇流器中获得广泛应用。常用控制方法有电压反馈控制和电流反馈控制,电流反馈控制可强迫电...

0 条评论

留言

您的邮箱地址不会被公布

 
 
   
评分: